Improving Update Summarization via Supervised ILP and Sentence Reranking
نویسندگان
چکیده
Integer Linear Programming (ILP) based summarization methods have been widely adopted recently because of their state-of-the-art performance. This paper proposes two new modifications in this framework for update summarization. Our key idea is to use discriminative models with a set of features to measure both the salience and the novelty of words and sentences. First, these features are used in a supervised model to predict the weights of the concepts used in the ILP model. Second, we generate preliminary sentence candidates in the ILP model and then rerank them using sentence level features. We evaluate our method on different TAC update summarization data sets, and the results show that our system performs competitively compared to the best TAC systems based on the ROUGE evaluation metric.
منابع مشابه
Multi-Document Summarization via Discriminative Summary Reranking
Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and e...
متن کاملImproving summarization performance by sentence compression: a pilot study
In this paper we study the effectiveness of applying sentence compression on an extraction based multi-document summarization system. Our results show that pure syntactic-based compression does not improve system performance. Topic signature-based reranking of compressed sentences does not help much either. However reranking using an oracle showed a significant improvement remains possible.
متن کاملQuery-focused Supervised Sentence Ranking for Update Summaries
We present a supervised sentence ranking approach for use in extractive update summarization. We use the same general machine learning approach described in earlier DUC papers, and adapt it to the update summarization task. The system proves adaptable enough to be effective at queryfocused update summaries.
متن کاملUsing Supervised Bigram-based ILP for Extractive Summarization
In this paper, we propose a bigram based supervised method for extractive document summarization in the integer linear programming (ILP) framework. For each bigram, a regression model is used to estimate its frequency in the reference summary. The regression model uses a variety of indicative features and is trained discriminatively to minimize the distance between the estimated and the ground ...
متن کاملFeature expansion for query-focused supervised sentence ranking
We present a supervised sentence ranking approach for use in extractive summarization. Using a general machine learning technique provides great flexibility for incorporating varied new features, which we demonstrate. The system proves quite effective at query-focused multi-document summarization, both for single summaries and for series of update summaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015